Premium
Robust and Broadband Optical Coupling by Topological Waveguide Arrays
Author(s) -
Song Wange,
Sun Wenzhao,
Chen Chen,
Song Qinghai,
Xiao Shumin,
Zhu Shining,
Li Tao
Publication year - 2020
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201900193
Subject(s) - broadband , photonics , coupling (piping) , waveguide , optoelectronics , silicon photonics , topology (electrical circuits) , physics , bandwidth (computing) , optics , materials science , computer science , telecommunications , engineering , electrical engineering , metallurgy
Photonic topological states have been exploited to give rise to robust optical behaviors that are quite insensitive to local defects or perturbations, which provide a promising solution for robust photonic integrations. Specifically, for example, optical coupling between waveguides is a universal function in integrated photonics. However, the coupling performance usually suffers from high structure‐sensitivity and challenges current manufacturing for massive production. Here, the topological edge state in a finite Su–Schriffer–Heeger modeled optical waveguide array is explored and robust optical coupling (e.g., directional coupling and beam splitting) is demonstrated, which is quite insensitive to structural variations. It is experimentally proved that even a large discrepancy (21–26% structural deviation) in silicon waveguides gaps has little influence on optical coupling (>90% performance), while conventional counterparts totally break down. Moreover, thanks to such a topological design, the devices show much broader working bandwidth (≈10 times performance improvement) than the conventional ones, greatly favoring the photonic integrations. This work would inspire new families of optical devices with robust and broadband properties that can excite more interesting and useful exploration in both fields, and possibly open a new avenue toward topological devices with unique properties and functionalities.