z-logo
Premium
Photon‐nanosieve for ultrabroadband and large‐angle‐of‐view holograms
Author(s) -
Huang Kun,
Liu Hong,
Si Guangyuan,
Wang Qian,
Lin Jiao,
Teng Jinghua
Publication year - 2017
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201700025
Subject(s) - holography , optics , physics , polarization (electrochemistry) , wavelength , lens (geology) , photon , diffraction , chemistry
Holography is of great interest for both scientific research and industry applications, but it has always suffered from the strong dependence on wavelength and polarization of the incident light. Having revisited the Huygens–Fresnel principle, we propose a novel holography mechanism by elaborately choosing discrete point sources (PSs) and realize it experimentally by mimicking the radiated fields of these PSs through carefully designed photon‐nanosieves. Removing the modulation dispersion usually existing in traditional and metasurface holograms, our hologram empowers the simultaneous operation throughout the ultraviolet, entire visible and near‐infrared wavelength regions without polarization dependence. Due to the deep‐subwavelength dimension of nanosieves, this robust hologram offers a large angle‐of‐view of 40°×40° and possesses a lensing effect under a spherical‐wave illumination, which can work as a high‐resolution, lens‐less and distortion‐free microprojector that displays a 260× magnified image. It might open an avenue to a high‐tolerance holographic technique for electromagnetic and acoustic waves.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here