Premium
Continuous‐wave differential absorption lidar
Author(s) -
Mei Liang,
Brydegaard Mikkel
Publication year - 2015
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201400419
Subject(s) - lidar , optics , continuous wave , laser , daytime , telescope , materials science , aperture (computer memory) , atmospheric optics , remote sensing , absorption (acoustics) , wavelength , physics , environmental science , geology , atmospheric sciences , acoustics
This work proves the feasibility of a novel concept of differential absorption lidar based on the Scheimpflug principle. The range‐resolved atmospheric backscattering signal of a laser beam is retrieved by employing a tilted linear sensor with a Newtonian telescope, satisfying the Scheimpflug condition. Infinite focus depth is achieved despite employing a large optical aperture. The concept is demonstrated by measuring the range‐resolved atmospheric oxygen concentration with a tunable continuous‐wave narrow‐band laser diode emitting around 761 nm over a path of one kilometer during night time. Laser power requirements for daytime operation are also investigated and validated with single‐band atmospheric aerosol measurements by employing a broad‐band 3.2‐W laser diode. The results presented in this work show the potential of employing the continuous‐wave differential absorption lidar (CW‐DIAL) technique for remote profiling of atmospheric gases in daytime if high‐power narrow‐band continuous‐wave light sources were to be employed.