Premium
Polarization independent broadband terahertz antireflection by deep‐subwavelength thin metallic mesh
Author(s) -
Ding Lu,
Wu Qing Yang Steve,
Teng Jing Hua
Publication year - 2014
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201400135
Subject(s) - terahertz radiation , materials science , broadband , optics , optoelectronics , polarization (electrochemistry) , bandwidth (computing) , total internal reflection , physics , telecommunications , computer science , chemistry
Abstract Broadband antireflection coatings for passive terahertz (THz) components are extremely important in the application of THz technology. Metallic nano‐films are commonly used for this purpose. Here a new approach to realize polarization independent broadband antireflection in THz range, based on a meta‐surface design is experimentally demonstrated. The internal reflection of a broadband THz pulse (spectral bandwidth of 0.06 – 4 THz) at a Si/air interface can be fully suppressed with a Cr square mesh with deep‐subwavelength dimensions. Small nonuniformity of the meta‐surface structure can enhance the tolerance on structural parameters for achieving the AR condition. The design concept is applicable to other metals and frequency ranges as well, which opens a new window for future AR coatings.