Premium
Broadband amplification of spoof surface plasmon polaritons at microwave frequencies
Author(s) -
Zhang Hao Chi,
Liu Shuo,
Shen Xiaopeng,
Chen Lin Hui,
Li Lianming,
Cui Tie Jun
Publication year - 2015
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201400131
Subject(s) - surface plasmon polariton , plasmon , broadband , optoelectronics , microwave , optics , waveguide , amplifier , surface plasmon , physics , materials science , cmos , quantum mechanics
Efficient amplification of spoof surface plasmon polaritons (SPPs) is proposed at microwave frequencies by using a subwavelength‐scale amplifier. For this purpose, a special plasmonic waveguide composed of two ultrathin corrugated metallic strips on top and bottom surfaces of a dielectric substrate with mirror symmetry is presented, which is easy to integrate with the amplifier. It is shown that spoof SPPs are able to propagate on the plasmonic waveguide in broadband with low loss and strong subwavelength effect. By loading a low‐noise amplifier chip produced by the semiconductor technology, the first experiment is demonstrated to amplify spoof SPPs at microwave frequencies (from 6 to 20GHz) with high gain (around 20dB), which can be directly used as a SPP amplifier device. The features of strong field confinement, high efficiency, broadband operation, and significant amplification of the spoof SPPs may advance a big step towards other active SPP components and integrated circuits.