Premium
Thick junction broadband organic photodiodes
Author(s) -
Armin Ardalan,
Hambsch Mike,
Kim Il Ku,
Burn Paul L,
Meredith Paul,
Namdas Ebinazar B
Publication year - 2014
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201400081
Subject(s) - photodiode , materials science , optoelectronics , broadband , dark current , photodetector , optics , dynamic range , specific detectivity , detector , wide dynamic range , diode , physics
Inorganic semiconductor‐based broadband photodetectors are ubiquitous in imaging technologies such as digital cameras and photometers. Herein a broadband organic photodiode (OPD) that has performance metrics comparable or superior to inorganic photodiodes over the same spectral range is reported. The photodiode with an active layer comprised of a poly[ N ‐9′‐heptadecanyl‐2,7‐carbazole‐ alt ‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:[6,6]‐phenyl‐C 71 ‐butyric acid methyl ester bulk heterojunction blend had a dark current < 1 nA/cm 2 , specific detectivity of ∼10 13 Jones, reverse bias −3 dB frequency response of 100 kHz to 1 MHz, and state‐of‐the‐art Linear Dynamic Range for organic photodiodes of nine orders of magnitude (180 dB). The key to these performance metrics was the use of a thick junction (700 nm), which flattened the spectral response, reduced the dark current and decreased performance variations. The strategy also provides a route to large area defect free “monolithic” structures for low noise integrated photo‐sensing, position determination, or contact, non‐focal imaging.