z-logo
Premium
Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting
Author(s) -
Wierer Jonathan J.,
Tsao Jeffrey Y.,
Sizov Dmitry S.
Publication year - 2013
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201300048
Subject(s) - voltage droop , light emitting diode , optoelectronics , diode , solid state lighting , materials science , laser , energy conversion efficiency , power (physics) , power density , optics , physics , quantum mechanics , voltage divider
Solid‐state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light‐emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as “efficiency droop.” Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state‐of‐the‐art input‐power‐density‐dependent power‐conversion efficiencies; potential improvements both in their peak power‐conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here