z-logo
Premium
Terahertz sensing and imaging based on nanostructured semiconductors and carbon materials
Author(s) -
Kawano Y.
Publication year - 2012
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201100006
Subject(s) - terahertz radiation , opacity , detector , optoelectronics , materials science , semiconductor , photonics , electromagnetic spectrum , optics , physics
The advantageous properties of terahertz (THz) waves, such as permeability through objects that are opaque for visible light and the energy spectrum in the microelectron‐volt range that are important in materials research, allow their potential use in various applications of sensing and imaging. However, since the THz region is located between the electronic and photonic bands, even the basic components such as detectors and sources have not been fully developed, unlike in other frequency regions. THz technology also has the problem of low imaging resolution, which results from a considerably longer wavelength than that of the visible light. However, the utilization of nanostructured electronic devices has recently opened up new horizons for THz sensing and imaging. This paper provides an overview of the THz detector and imaging techniques and tracks their recent progress. Specifically, two cutting‐edge techniques, namely, frequency‐selective THz‐photon detection and integrated near‐field THz imaging, are discussed in detail. Finally, the studies of superconductors and semiconductors with high‐resolution THz imaging are described.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here