z-logo
Premium
On‐demand photonic crystal resonators
Author(s) -
Kim M.K.,
Kim J.Y.,
Kang J.H.,
Ahn B.H.,
Lee Y.H.
Publication year - 2011
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.201000017
Subject(s) - microfiber , photonic crystal , resonator , optics , photonics , q factor , photonic crystal fiber , coupling (piping) , optoelectronics , materials science , photon , physics , optical fiber , metallurgy , composite material
Recent progress in the field of re‐locatable photonic crystal resonators is discussed with a particular emphasis on the flexible scheme that employs highly‐curved microfiber. In this scheme a spectrally‐tunable high‐quality‐factor resonator can be defined repeatedly by physically moving a curved microfiber to a new position. When a curved microfiber is placed on top of a photonic crystal waveguide (or photonic crystal), a photonic well is newly created in the vicinity of the contact point. Inside of this photonic well, high‐quality‐factor resonant modes are generated at frequencies below the cutoff edge of the guided mode. The tapered microfiber is an integral part of a single mode optical fiber and efficient out‐coupling is naturally obtained. The sub‐nanometer spectral tuning capability that is available by changing the curvature of the microfiber is also an important characteristic and discussed. This spectrally‐ and spatially‐reconfigurable photonic crystal resonator is expected to be a potential platform for photonic crystal based single photon sources, which enables accurate spatial overlap and spectral overlap with a single quantum dot, together with straightforward photon out‐coupling to the fiber with high efficiency.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here