Premium
Laboratory simulations of astrophysical blast waves with high energy lasers
Author(s) -
Ditmire T.,
Edens A.D.
Publication year - 2008
Publication title -
laser and photonics reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.778
H-Index - 116
eISSN - 1863-8899
pISSN - 1863-8880
DOI - 10.1002/lpor.200810005
Subject(s) - blast wave , laser , physics , shock wave , explosive material , supernova , shock (circulatory) , plasma , radiative transfer , pulse (music) , detonation , electromagnetic radiation , radiation , optics , astronomy , mechanics , nuclear physics , medicine , chemistry , organic chemistry , detector
We review recent efforts to simulate aspects of supernova remnants in laboratory experiments by creating energetic explosions with high energy lasers. High energy pulsed lasers are uniquely suited for these kinds of studies. By focusing a laser with pulse energy of a few joules to many hundreds of joules onto a solid target or into a dense gas target, explosive shock waves of very high Mach number can be created. With a well chosen set of laser and target parameters it has been shown by a number of groups that radiative blast waves can be produced. Such blast waves have dynamics dominated by radiation transport and exhibit unusual characteristics, the most important of which include hydrodynamic instabilities which may play an important role in the structure of the interstellar medium. As a result there are now prospects for gaining new insights into astronomical observations of supernova remnants by studying laboratory laser driven plasma systems.