Premium
An underwater video system to assess abundance and behavior of epibenthic Mysis
Author(s) -
O'Malley Brian P.,
Dillon Rebecca A.,
Paddock Robert W.,
Hansson Sture,
Stockwell Jason D.
Publication year - 2018
Publication title -
limnology and oceanography: methods
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.898
H-Index - 72
ISSN - 1541-5856
DOI - 10.1002/lom3.10289
Subject(s) - benthic zone , diel vertical migration , software deployment , environmental science , underwater , sampling (signal processing) , oceanography , abundance (ecology) , predation , ecology , geology , computer science , biology , detector , telecommunications , operating system
The application of remote video technologies can provide alternative views of in situ behavior and distribution of aquatic organisms that might be missed with traditional net‐based techniques. We describe a remote benthic video camera system designed to quantify epibenthic density of the macroinvertebrate Mysis diluviana . We deployed the camera multiple times during the day and night at a 60‐m depth site in Lake Champlain and quantified Mysis density from the footage using basic methods and readily available software. Density estimates from the video were on average 43 times higher than concurrent estimates from benthic sled tows, suggesting sleds may be inefficient at sampling mysids. Deployment caused initial scattering of individuals, resulting in low densities immediately after deployment that slowly increased. On some occasions, Mysis densities on video fluctuated greatly over several hours, consistent with organisms that have a patchy distribution on the lake bottom. The camera system provided novel insights on behavior and distribution of Mysis on benthic habitats, demonstrating potential for use as a tool to study partial diel vertical migration and predator–prey interactions.