Premium
Longitudinal patterns and linkages in benthic fine particulate organic matter composition, respiration, and nutrient uptake
Author(s) -
Hood James M.,
Collis Lyndsie M.,
Schade John D.,
Stark Rebecca A.,
Finlay Jacques C.
Publication year - 2021
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11781
Subject(s) - benthic zone , nutrient , biomass (ecology) , environmental science , organic matter , ecosystem , autotroph , respiration , ecology , biology , botany , genetics , bacteria
Abstract Longitudinal changes in the structure and function of river ecosystems have long been recognized, yet our understanding of how such patterns shape elemental cycles remains limited. In particular, while benthic fine particulate organic matter (POM, 0.7–1000 μm) may control many stream nutrient cycles, less is known about longitudinal patterns or controls of benthic POM‐associated nutrient uptake. We conducted a survey of benthic POM‐associated respiration and nutrient uptake as well as microbial biomass (bacteria and algae) and benthic POM composition in four size classes (0.7–53 μm, 53–106 μm, 106–250 μm, and 250–1000 μm) in six streams in the forested South Fork Eel River watershed (California), encompassing a longitudinal gradient in light availability and primary production. Benthic POM at downstream sites was composed of smaller particles with lower organic matter content that were richer in nitrogen and autotrophic material. Areal respiration and nutrient uptake rates increased 11‐ to 67‐fold with stream size. While microbial activity rates did not increase with stream size, benthic POM‐associated microbial biomass increased 20‐fold with stream size, and closely tracked a 15‐fold increase in light availability, and primary production. Thus, microbial biomass, not activity, determined longitudinal patterns in benthic POM‐associated areal nutrient uptake and respiration rates. We attribute longitudinal patterns in microbial biomass to increases in light availability and primary production. Our findings help clarify the role of local (primary production) and upstream processes in shaping ecosystem structure and function.