z-logo
Premium
Temperature acclimation alters phytoplankton growth and production rates
Author(s) -
Strock Jacob P.,
MendenDeuer Susanne
Publication year - 2021
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11637
Subject(s) - phytoplankton , acclimatization , heterosigma akashiwo , growth rate , climate change , intraspecific competition , ecosystem , marine ecosystem , ecology , environmental science , biology , oceanography , atmospheric sciences , algal bloom , nutrient , physics , geometry , mathematics , geology
Temperature is a major driver of phytoplankton growth and physiology, but despite decades of study on temperature effects, the influence of temperature fluctuations on the growth acclimation of marine phytoplankton is largely unknown. To address this knowledge gap, we subjected a coastal phytoplankton species, Heterosigma akashiwo , to ecologically relevant temperature shifts of 2–3°C, cumulatively totaling 3–16°C across a range from 6°C to 31°C over a 3‐week period. Using a symmetric design, we show time dependent differences between growth rates and that these changes were related to the magnitude of the temperature shift, but not the direction. Cell size scaled inversely with temperature at a rate of −1.9 to −3.3%°C −1 at all except the highest temperature treatments > 25°C. Intraspecific variability in growth rates increased exponentially with cumulative thermal shifts, suggesting thermal variability may be a driver of intraspecific variation. The observed acclimation effects on phytoplankton growth rates suggest that ignoring acclimation effects could systematically under or overestimate temperature‐dependent primary production. Empirical results, contextualized with in situ coastal ocean temperature record, demonstrated that daily primary production could differ from current model assumptions utilizing acclimated rates by −33% to +36%. If broadly applicable to diverse phytoplankton species, these results have ramifications for predicting the ecology and production of phytoplankton in present day dynamic ecosystems and in future climate scenarios where thermal variability is expected to increase.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here