z-logo
Premium
Tackling the jelly web: Trophic ecology of gelatinous zooplankton in oceanic food webs of the eastern tropical Atlantic assessed by stable isotope analysis
Author(s) -
Chi Xupeng,
Dierking Jan,
Hoving HenkJan,
Lüskow Florian,
Denda Anneke,
Christiansen Bernd,
Sommer Ulrich,
Hansen Thomas,
Javidpour Jamileh
Publication year - 2021
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11605
Subject(s) - trophic level , food web , zooplankton , gelatinous zooplankton , biology , ecology , ecological niche , isotope analysis , plankton , niche differentiation , niche , competition (biology) , habitat
Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ 13 C and δ 15 N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning > 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth‐resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here