z-logo
Premium
Extreme warming and regime shift toward amplified variability in a far northern lake
Author(s) -
Bégin Paschale N.,
Tanabe Yukiko,
Kumagai Michio,
Culley Alexander I.,
Paquette Michel,
Sarrazin Denis,
Uchida Masaki,
Vincent Warwick F.
Publication year - 2021
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11546
Subject(s) - water column , environmental science , oceanography , arctic , sea ice , shelf ice , atmospheric sciences , melt pond , turbidity , arctic ice pack , climatology , geology , drift ice , antarctic sea ice
Mean annual air temperatures in the High Arctic are rising rapidly, with extreme warming events becoming increasingly common. Little is known, however, about the consequences of such events on the ice‐capped lakes that occur abundantly across this region. Here, we compared 2 years of high‐frequency monitoring data in Ward Hunt Lake in the Canadian High Arctic. One of the years included a period of anomalously warm conditions that allowed us to address the question of how loss of multi‐year ice cover affects the limnological properties of polar lakes. A mooring installed at the deepest point of the lake (9.7 m) recorded temperature, oxygen, chlorophyll a (Chl a ) fluorescence, and underwater irradiance from July 2016 to July 2018, and an automated camera documented changes in ice cover. The complete loss of ice cover in summer 2016 resulted in full wind exposure and complete mixing of the water column. This mixing caused ventilation of lake water heat to the atmosphere and 4°C lower water temperatures than under ice‐covered conditions. There were also high values of Chl a fluorescence, elevated turbidity levels and large oxygen fluctuations throughout fall and winter. During the subsequent summer, the lake retained its ice cover and the water column remained stratified, with lower Chl a fluorescence and anoxic bottom waters. Extreme warming events are likely to shift polar lakes that were formerly capped by continuous thick ice to a regime of irregular ice loss and unstable limnological conditions that vary greatly from year to year.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here