z-logo
Premium
Coastal carbon cycle changes following mangrove loss
Author(s) -
Sippo James Z.,
Sanders Christian J.,
Santos Isaac R.,
Jeffrey Luke C.,
Call Mitchell,
Harada Yota,
Maguire Kylie,
Brown Dylan,
Conrad Stephen R.,
Maher Damien T.
Publication year - 2020
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11476
Subject(s) - mangrove , blue carbon , environmental science , deforestation (computer science) , carbon cycle , alkalinity , carbon fibers , ecosystem , ecology , carbon sequestration , carbon dioxide , chemistry , biology , materials science , organic chemistry , composite number , computer science , composite material , programming language
Global mangrove loss is occurring from deforestation and extreme climatic events, but changes to the coastal carbon cycle following mangrove mortality and/or loss are not well understood. In 2015/2016, a massive climate‐driven mangrove dieback event occurred over ~ 1000 km of Australian coastline. To assess carbon loss following mortality, carbon fluxes in adjacent living and dead forest areas were compared 8 and 20 months postforest dieback. Dead areas experienced an increase in soil CO 2 efflux by ~ 189%, and a decrease in oceanic dissolved inorganic carbon (DIC) outwelling of ~ 50% relative to living areas. DIC outwelling (predominantly carbonate alkalinity) and soil CO 2 efflux accounted for 81% and 16% of losses from the living forest, in comparison to 51% and 47%, respectively, from the dead forest. The dieback drove a shift from a dominance of oceanic carbon outwelling to increased atmospheric CO 2 emissions and decreased alkalinity exports. This shift was likely driven by increased oxygen sediment permeation and the loss of mangrove net primary productivity. Combining our new observations with literature data, we found a logarithmic relationship between soil carbon loss and time since mangrove loss. Using this relationship, we estimate ongoing global carbon losses from historical mangrove deforestation and dieback could be 13.7 ± 9.4 Tg C yr −1 , which is eightfold higher than previous estimates and offsets global mangrove carbon burial by ~ 60%. Even if no future deforestation occurred, we estimate ongoing carbon losses to the atmosphere and ocean from current global mangrove losses of 27 Tg C over the next 30 yr.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here