z-logo
Premium
Acoustic detection of zooplankton diel vertical migration behaviors on the northern Gulf of Mexico shelf
Author(s) -
Parra Sabrina M.,
Greer Adam T.,
Book Jeffrey W.,
Deary Alison L.,
Soto Inia M.,
Culpepper Carla,
Hernandez Frank J.,
Miles Travis N.
Publication year - 2019
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11171
Subject(s) - diel vertical migration , zooplankton , oceanography , dusk , nocturnal , daytime , canyon , geology , backscatter (email) , echo sounding , environmental science , biology , atmospheric sciences , ecology , telecommunications , geomorphology , computer science , wireless
Abstract Zooplankton respond to light levels, oceanographic conditions, and other cues through diel vertical migrations (DVMs), which can occur at dawn and dusk. However, unraveling the influence of these drivers is difficult without high‐resolution time series data encompassing multiple events that can alter zooplankton DVM. We address this knowledge gap with an interseasonal study using high‐resolution measurements of zooplankton DVMs on the freshwater‐influenced northern Gulf of Mexico shelf. Sampling encompassed 6 months of acoustic backscatter and vertical velocity profiles at five locations, supplemented with zooplankton taxonomic composition and abundance from in situ imaging, net samples, glider profiles, and remote sensing. Relative backscatter anomalies (RBAs) displayed a daily pattern that changed abruptly at dawn and dusk, with lower daytime (2–15 dB lower) values relative to nighttime. Daily variability intensified from autumn to spring. The DVM pattern changed in structure on shorter temporal scales (days to weeks), associated with factors including onshore and off‐shelf currents, lunar variability, cloud cover, and harmful algal bloom passage. In situ imaging and net observations showed that the most likely acoustically observed migrating zooplankton were chaetognaths, shrimp (performing reverse DVMs), copepods, and ostracods. Shrimp and chaetognath orientations also showed diel variability, with individuals more frequently oriented vertically during the daytime. Daily RBA and vertical velocity anomaly patterns could be caused by reverse DVM to the near‐surface or nocturnal DVM to the near‐bottom (outside the acoustic detection range) or diel changes in organism orientation. Pattern complexities suggest that multiple behaviors are happening and being observed simultaneously.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here