Premium
The dependence of synchrony on timescale and geography in freshwater plankton
Author(s) -
Anderson Thomas L.,
Sheppard Lawrence W.,
Walter Jonathan A.,
Hendricks Susan P.,
Levine Todd D.,
White David S.,
Reuman Daniel C.
Publication year - 2019
Publication title -
limnology and oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 197
eISSN - 1939-5590
pISSN - 0024-3590
DOI - 10.1002/lno.11054
Subject(s) - zooplankton , ecology , biomass (ecology) , population , taxon , plankton , geographical distance , spatial variability , interspecific competition , sampling (signal processing) , spatial ecology , abundance (ecology) , phytoplankton , biology , statistics , physics , mathematics , demography , sociology , detector , nutrient , optics
Abstract Spatial synchrony is defined by related fluctuations through time in population abundances measured at different locations. The degree of relatedness typically declines with increasing distance between sampling locations. Standard approaches for assessing synchrony assume isotropy in space and uniformity across timescales of analysis, but it is now known that spatial variability and timescale structure in population dynamics are common features. We tested for spatial and timescale structure in the patterns of synchrony of freshwater plankton in Kentucky Lake, U.S.A. We also evaluated whether different mechanisms may drive synchrony and its spatial structure on different timescales. Using wavelet techniques and matrix regression, we analyzed phytoplankton biomass and abundances of seven zooplankton taxa at 16 locations sampled from 1990 to 2015. We found that zooplankton abundances and phytoplankton biomass exhibited synchrony at multiple timescales. Timescale structure in the potential mechanisms of synchrony was revealed primarily through networks of relationships among zooplankton taxa, which differed by timescale. We found substantial interspecific variability in geographic structures of synchrony and their causes: all mechanisms we considered strongly explained geographic structure in synchrony for at least one species, while Euclidean distance between sampling locations was generally less well supported than more mechanistic explanations. Geographic structure in synchrony and its underlying mechanisms also depended on timescale for a minority of the taxa tested. Overall, our results show substantial and complex but interpretable variation in structures of synchrony across three variables: space, timescale, and taxon. It seems likely these aspects of synchrony are important general features of freshwater systems.