z-logo
Premium
Identification of sediment source and sink areas in a Himalayan watershed using GIS and remote sensing
Author(s) -
Jain M. K.,
Mishra S. K.,
Shah R. B.
Publication year - 2009
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.952
Subject(s) - watershed , hydrology (agriculture) , drainage basin , thematic map , drainage density , environmental science , erosion , wepp , soil map , sediment , terrain , sediment transport , remote sensing , geology , soil science , soil conservation , geomorphology , soil water , geography , cartography , computer science , geotechnical engineering , archaeology , machine learning , agriculture
Erosion is a natural geomorphic process occurring continually over the Earth's surface and it largely depends on topography, vegetation, soil and climatic variables, and therefore, exhibits pronounced spatial variability due to catchment heterogeneity and climatic variation. This problem can be circumvented by discretizing the catchment into approximately homogeneous sub‐areas using GIS. In this study, the remote sensing and GIS techniques (through Imagine®8.6 and ArcGIS®9.1 software) were used for derivation of spatial information, catchment discretization, data processing etc. for the Himalayan Chaukhutia watershed (India). Various thematic layers for different factors of USLE were generated and overlaid to compute spatially distributed gross soil erosion maps for the watershed using 18‐year rainfall data. The concept of transport limited accumulation was formulated and used in ArcGIS® for generating the transport capacity maps. Using these maps, the gross soil erosion was routed to the catchment outlet using hydrological drainage paths, for derivation of transport capacity limited sediment outflow maps. These maps depict the amount of sediment rate from a particular grid in spatial domain and the pixel value of the outlet grid indicates the sediment yield at the outlet of the watershed. Up on testing, the proposed method simulated the annual sediment yield with less than ±40% error. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here