Premium
Effect of land use on some soil properties related to the risk of loss of soil phosphorus
Author(s) -
Troitiño F.,
GilSotres F.,
Leirós M.C.,
TrasarCepeda C.,
Seoane S.
Publication year - 2007
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.810
Subject(s) - soil water , arable land , environmental science , environmental chemistry , saturation (graph theory) , organic matter , nutrient , phosphorus , land use , soil science , chemistry , agriculture , mathematics , ecology , organic chemistry , combinatorics , biology
Although land use clearly modifies soil properties, the intensity of the modifications depends on the management procedures and also on the soil properties themselves. To enable construction of models that describe soil nutrient losses, extensive databases corresponding to soils under different land use must be made available. Analysis of 404 samples of soils (from Galicia, NW Spain), under different types of use revealed that most of the soil properties underwent changes in the following order: forest use (least modified) ‐ grassland ‐ arable (most modified). Decreases in the contents of organic matter, extractable oxides and P‐adsorption capacity followed the same order, as did increases in the contents of available P (total, inorganic and organic), P desorbed with distilled water, and degree of P saturation. In general, in all of the soils, independently of their use, the amount of P desorbed (whether total P, molybdate reactive P or particulate P) was more closely related to the degree of P saturation than to the levels of P extracted with bicarbonate. Copyright © 2007 John Wiley & Sons, Ltd.