Premium
The effect of land management on carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan plateau
Author(s) -
Wang W. Y.,
Wang Q. J.,
Wang Ch. Y.,
Shi H. L.,
Li Y.,
Wang G.
Publication year - 2005
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.661
Subject(s) - grassland , soil water , plateau (mathematics) , agronomy , nitrogen , environmental science , ecological succession , ecosystem , soil carbon , zoology , biology , chemistry , soil science , botany , ecology , mathematics , mathematical analysis , organic chemistry
Large‐scale grassland rehabilitation has been carried out on the severely degraded lands of the Tibetan plateau. The grasslands created provide a useful model for evaluating the recovery of ecosystem properties. The purposes of this research were: (1) to examine the relative influence of various rehabilitation practices on carbon and nitrogen in plants and soils in early secondary succession; and (2) to evaluate the degree to which severely degraded grassland altered plant and soil properties relative to the non‐disturbed native community. The results showed: (1) The aboveground tissue C and N content in the control were 105·97 g m −2 and 3·356 g m −2 , respectively. The aboveground tissue C content in the mixed seed treatment, the single seed treatment, the natural recovery treatment and the severely degraded treatment was 137 per cent, 98 per cent, 49 per cent and 38 per cent, respectively, of that in the control. The corresponding aboveground tissue N content was 109 per cent, 84 per cent, 60 per cent and 47 per cent, respectively, of that in the control. (2) Root C and N content in 0–20 cm depths of the control had an average 1606 g m −2 and 30·36 g m −2 , respectively. Root C and N content in the rehabilitation treatments were in the range of 26–36 per cent and 35–53 per cent, while those in the severely degraded treatment were only 17 per cent and 26 per cent of that in the control. (3) In the control the average soil C and N content at 0–20 cm was 11 307 g m −2 and 846 g m −2 , respectively. Soil C content in the uppermost 20 cm in the seeded treatments, the natural recovery treatment and the severely degraded treatment was 67 per cent, 73 per cent and 57 per cent, respectively, while soil N content in the uppermost 20 cm was 72 per cent, 82 per cent and 79 per cent, respectively, of that in the control. The severely degraded land was a major C source. Restoring the severely degraded lands to perennial vegetation was an alternative approach to sequestering C in former degraded systems. N was a limiting factor in seeding grassland. It is necessary for sustainable utilization of seeding grassland to supply extra N fertilizer to the soil or to add legume species into the seed mix. Copyright © 2005 John Wiley & Sons, Ltd.