z-logo
Premium
Tracing Pb Pollution Penetration in Temperate Podzols
Author(s) -
FerroVázquez Cruz,
PérezRodríguez Marta,
NóvoaMuñoz Juan Carlos,
Klaminder Jonatan,
Bindler Richard,
Martínez Cortizas Antonio
Publication year - 2017
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.2777
Subject(s) - podzol , environmental chemistry , soil water , chemistry , pedogenesis , eluvium , organic matter , dissolution , soil science , leaching (pedology) , weathering , mineralogy , environmental science , geology , geochemistry , organic chemistry
We combine high‐resolution soil sampling with lead (Pb) analyses (concentrations and stable isotopes) in two temperate podzols, together with previous data obtained with selective Al and Fe dissolution techniques. We aim to assess how atmospheric Pb is incorporated into the soils during pedogenesis. Partial least squares modelling for Pb concentrations shows that the podzolization process has the largest effect on Pb concentration (80·3% of the variance). The proportion of inorganic secondary compounds, the input of fresh organic matter from the soil surface and the relative abundance of Fe versus Al are responsible for a small part of the Pb concentration variance. Lead isotopic composition ( 206 Pb/ 207 Pb ratios) depends on soil organic matter content either fresh/poorly humified (57·3% of the variance) or humified (24·7% of the variance). The Pb linked to inorganic compounds and the overall podzolization process play a minor role in isotopic signature (5·3 and 3·7% of the variance respectively). Soil pH appears to be the controlling variable of the different transport and retention mechanisms. The relatively low isotopic ratios observed in spodic horizons result from geogenic Pb released through the preferential dissolution of the isotopically distinct most weatherable minerals of the parent material in the eluvial horizons, which undergoes downward mobilization. An accurate knowledge of soil reactive components and formation mechanisms is essential to a correct diagnose of the scope of Pb pollution and a more effective design of remediation strategies. Copyright © 2017 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here