Premium
Restoration Affect Soil Organic Carbon and Nutrients in Different Particle‐size Fractions
Author(s) -
Chen Xiaohong,
Duan Zhenghu,
Tan Mingliang
Publication year - 2016
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.2400
Subject(s) - nutrient , topsoil , silt , environmental science , soil carbon , soil science , agronomy , soil water , chemistry , geology , biology , paleontology , organic chemistry
Abstract Desertification is reversible and can often be prevented by adopting measures to control the causal processes. Desertification has generally decreased in most of the arid and semiarid areas of China during the last few decades because of the restoration of degraded vegetation and soil nutrients. However, little is known about the responses of soil nutrients in different particle‐size fractions to the restoration process and about the importance of this response to the restoration of bulk‐soil nutrients. In this study, we separated bulk‐soil samples in different sieve fractions: coarse‐fine sand (2·0–0·1 mm), very fine sand (0·10–0·05 mm) and silt + clay (<0·05 mm) fractions. Soil organic carbon (SOC), N, P and K contents stored in the silt + clay were greater than the contents of non‐protected nutrients in the coarser fractions. During the restoration of desertified land, the content and stability of bulk‐soil SOC, total N and P and available N, P and K increased with increasing nutrient contents in all fractions. Topsoil nutrients stored in coarse‐fine sand and very fine sand fractions were more sensitive than those stored in the silt + clay fraction to the fixation of mobile sandy lands and vegetation recovery. The changes of bulk‐soil nutrients and their stability were decided by the soil nutrients associated with all particle‐size fractions. Path analysis revealed that SOC and total nutrients in very fine sand and available nutrients in coarse‐fine sand were the key factors driving the soil recovery. These results will help us understand soil recovery mechanisms and evaluate the degree of recovery. Copyright © 2015 John Wiley & Sons, Ltd.