Premium
Soil Organic Carbon Molecular Properties: Effects of Time Since Reclamation in a Minesoil Chronosequence
Author(s) -
Chaudhuri S.,
McDonald L. M.,
Skousen J.,
PenaYewtukhiw E. M.
Publication year - 2015
Publication title -
land degradation and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.403
H-Index - 81
eISSN - 1099-145X
pISSN - 1085-3278
DOI - 10.1002/ldr.2202
Subject(s) - chronosequence , soil carbon , land reclamation , soil quality , environmental science , total organic carbon , chemistry , soil science , environmental chemistry , soil water , ecology , biology
Studies on molecular characterization of soil organic carbon (SOC), although critical to understanding SOC dynamics, are relatively scarce for reclaimed minesoils. The aim of this study was to assess the effects of time since reclamation on SOC molecular properties in a reclaimed minesoil chronosequence using different spectroscopic indices. The chronosequence consisted of four minesoils, with similar soil‐forming conditions, reclaimed to pasture ecosystem, and distinguished only by time since reclamation varying from 1 to 22 years. Results indicated that the SOC molecules in the older minesoils were comprised of highly humified polyaromatic and polycondensed species with higher proportions of O‐containing and N‐containing functional groups. In each minesoil, resistant and labile SOC fractions were identified. The resistant SOC fraction constituted >20 and <10 per cent of total SOC (g kg −1 ) in the oldest and youngest minesoil, respectively. Among the spectroscopic indices, the ϵ 285 ultraviolet‐visible index, diagnostic of aromatic C, was the most efficient in identifying the intrasite short‐term (1‐year) changes in SOC molecular properties. Strong positive relationships found between different spectroscopic indices and total SOC (g kg −1 ), with consistently higher r 2 values observed in older minesoils, indicated that SOC molecular characteristics played a key role in overall SOC dynamics, becoming more influential with increasing time since reclamation. In addition, significant relationships between the spectroscopic indices and different soil quality parameters indicated that SOC molecular properties influenced soil quality as well. Overall, the results indicated that SOC molecular properties were useful indicators of both SOC dynamics and soil quality in this minesoil chronosequence. Copyright © 2013 John Wiley & Sons, Ltd.