z-logo
Premium
Kinetic model for hydrocarbon‐assisted particulate boron combustion
Author(s) -
Brown R. C.,
Kolb C. E.,
Cho S. Y.,
Yetter R. A.,
Dryer F. L.,
Rabitz H.
Publication year - 1994
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550260302
Subject(s) - chemistry , combustion , elementary reaction , desorption , particle (ecology) , boron , diffusion , kinetic energy , hydrocarbon , chemical reaction , adsorption , thermodynamics , reaction mechanism , kinetics , chemical kinetics , aerosol , organic chemistry , catalysis , physics , oceanography , quantum mechanics , geology
A kinetic model is presented to describe the high temperature (1800 K < T < 3000 K) surface oxidation of particulate boron in a hydrocarbon combustion environment. The model includes a homogeneous gas‐phase B/O/H/C oxidation mechanism consisting of 19 chemical species and 58 forward and reverse elementary reactions, multi‐component gas‐phase diffusion, and a heterogeneous surface oxidation mechanism consisting of ‘elementary’ adsorption and desorption reaction steps. Thermochemical and kinetic parameters for the surface reactions are estimated from available experimental data and/or elementary transition state arguments. The kinetic processes are treated using a generalized kinetics code, with embedded sensitivity analysis, for the combustion of a one‐dimensional (particle radius), spherical particle. Model results are presented for the oxidation of a 200 μm boron particle in a JP‐4/air mixture at ambient temperatures of 1400 K and 2000 K. These results include temperature and gas‐phase species profiles as a function of radial distance and particle burning rates. © 1994 John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom