Premium
Rate constants for the reaction of atomic and molecular bromine with gallium arsenide
Author(s) -
Salusbury I. M.,
Ogryzlo E. A.
Publication year - 1991
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550230605
Subject(s) - chemistry , arrhenius equation , bromine , torr , activation energy , gallium , reaction rate , atmospheric temperature range , rate equation , thermodynamics , analytical chemistry (journal) , kinetics , catalysis , organic chemistry , physics , quantum mechanics
The reaction of the (100) face of a gallium arsenide single crystal with atomic and molecular bromine has been studied in a discharge flow system at temperatures between 100 and 225°C and pressures between 0.1 and 40 torr. The reaction with Br 2 was found to be first order in Br 2 only at pressures below 1 torr. Temperature dependence studies in the linear range gave the activation energy and preexponential factor for the rate controlling reaction in the low pressure regime. The results are summarized in the following Arrhenius equation:\documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 = 10^{\left({4.5 \pm 5} \right)} \mu {\rm m}\ {\rm min}^{- 1}\ {\rm torr}^{- 1} e^{- {{\left({26.6 \pm 4.2{{{\rm kJ}} \mathord{\left/ {\vphantom {{{\rm kJ}} {{\rm mol}}}} \right. \kern-\nulldelimiterspace} {{\rm mol}}}} \right)} \mathord{\left/ {\vphantom {{\left({26.6 \pm 4.2{{{\rm kJ}} \mathord{\left/ {\vphantom {{{\rm kJ}} {{\rm mol}}}} \right. \kern-\nulldelimiterspace} {{\rm mol}}}} \right)} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} $$\end{document}Deviations from linearity at high pressures are discussed in terms of two alternative mechanisms. The reaction of GaAs with atomic bromine was also studied as a function of temperature, and found to have a temperature dependence described by the following Arrhenius equation:\documentclass{article}\pagestyle{empty}\begin{document}$$ k_3 = \left({2.0 \pm 0.5} \right) \times 10^4 \mu {\rm m}\ {\rm min} ^{- 1}\ {\rm torr}^{- 1} e^{- {{\left({12.9 \pm 0.9} \right){\rm kJ}} \mathord{\left/ {\vphantom {{\left({12.9 \pm 0.9} \right){\rm kJ}} {{{{\rm mol}} \mathord{\left/ {\vphantom {{{\rm mol}} {RT}}} \right. \kern-\nulldelimiterspace} {RT \right. \kern-\nulldelimiterspace} {{{{\rm mol}} \mathord{\left/ {\vphantom {{{\rm mol}} {RT}}} \right. \kern-\nulldelimiterspace} {RT $$\end{document}