Premium
Reaction kinetics of NH in the shock tube pyrolysis of HNCO
Author(s) -
Mertens John D.,
Chang Albert Y.,
Hanson Ronald K.,
Bowman Craig T.
Publication year - 1989
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550211107
Subject(s) - isocyanic acid , chemistry , kinetics , pyrolysis , shock tube , laser linewidth , shock wave , absorption (acoustics) , analytical chemistry (journal) , chemical kinetics , rate equation , shock (circulatory) , photochemistry , laser , thermodynamics , organic chemistry , optics , physics , medicine , quantum mechanics
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X 3 Σ − ) radical were measured using a cw, narrow‐linewidth laser absorption diagnostic at 336 nm. The second‐order rate coefficients of the reactions:were determined to be:\documentclass{article}\pagestyle{empty}\begin{document}$$k_{1{\rm a}} = 9.84\,\, \times \,\,10^{15} \,\,\exp (- 43000/T,{\rm K})\,\,\,\,\,\,(f = 0.65,F = 1.50)\,\,\,\,\,\,T = 1830 - 3340\,\,{\rm K,}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm 2} = 5.1\,\, \times \,\,10^{13} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(f = 0.7,F = 1.3)\,\,\,\,\,\,T = 2070 - 2730\,\,{\rm K,}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm 3} = 2.65\,\, \times \,\,10^{14} \,\,\,\exp (- 38000/T,{\rm K})\,\,\,\,\,\,(f = 0.5,F = 1.4)\,\,\,\,\,\,T = 3140 - 3320\,\,{\rm K,}$$\end{document} cm 3 −mol −1 −s −1 , where f and F define the lower and upper uncertainty limits, respectively. The data for k 1a are somewhat better fit by:\documentclass{article}\pagestyle{empty}\begin{document}$$k_{{\rm 1a}} = 3.26\,\, \times \,\,10^{35} T^{ - 5.11} \,\,\exp (- 55300/T,{\rm K})\,\,\,{\rm cm}^{\rm 3} {\rm - mol}^{{\rm - 1}} {\rm - s}^{{\rm - 1}} .$$\end{document}