z-logo
Premium
Iodine catalyzed pyrolysis of dimethyl sulfide. Heats of formation of CH 3 SCH 2 I, the CH 3 SCH 2 radical, and the pibond energy in CH 2 S
Author(s) -
Shum Lilian G. S.,
Benson Sidney W.
Publication year - 1985
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550170305
Subject(s) - chemistry , arrhenius equation , catalysis , arrhenius plot , reaction rate constant , decomposition , activation energy , kinetic energy , steady state (chemistry) , dimethyl sulfide , gas phase , kinetics , analytical chemistry (journal) , thermodynamics , sulfur , organic chemistry , physics , quantum mechanics
A kinetic study has been made of the gas phase, I 2 ‐catalyzed decomposition of (CH 3 ) 2 S at 630–650 K. Some I 2 is consumed initially, reaching a steady‐state concentration. The initial major products are CH 4 and CH 2 S together with small amounts of CH 3 SCH 2 I, CH 3 I, HI, and CS 2 . The initial reaction corresponds to a pseudo‐equilibrium:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CH}_{\rm 3} {\rm SCH}_{\rm 3} + {\rm I}_{\rm 2} \mathop {\rightleftharpoons}\limits^{\rm A} {\rm CH}_{\rm 3} {\rm SCH}_{\rm 2} {\rm I + HI} $$ \end{document}accompanied by:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CH}_{\rm 3} {\rm SCH}_{\rm 2} {\rm I}\mathop {\hbox to 25pt{\rightarrowfill}}\limits^{\rm B} {\rm CH}_{\rm 3} {\rm I + SCH}_{\rm 2} $$\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CH}_{\rm 3} {\rm I + HI}\mathop {\hbox to 25pt{\rightarrowfill}} {\rm CH}_{\rm 4} {\rm + I}_{\rm 2} $$\end{document}which brings (I 2 ) into steady state and a final complex reaction:From the initial rate of I 2 loss it is possible to obtain Arrhenius parameters for the iodination:We measure k 1 , (644 K) = 150 L/mol s and from both the Arrhenius plot and independent estimates A 1 (644 K) = 10 11.2 ± 0.3 L/mol s. Thus, E 1 = 26.7 ± 1 kcal/mol. From the steady‐state I 2 concentration, an assumed mechanism and the known rate parameters for the CH 3 I/HI system. It is possible to deduce K A (644) = 3.8 × 10 −2 with an uncertainty of a factor of 2. Using an estimated Δ S   A °(644) = 4.2 ± 1.0 e.u. we find Δ H A (644) = 7.0 ± 1.1 kcal. With 〈Δ C PA 〉644 = 1.2 this becomes: Δ H A (298) = 6.6 ± 1.1 kcal/mol. Then Δ H   ƒ298 °(CH 3 SCH 2 I) = 6.3 ± 1 kcal/mol. Making the assumption that E −1 = 1.0 ± 0.5 kcal/mol we find Δ H   ° 1(644) = 25.7 ± 0.7 kcal/mol and with 〈Δ C PI 〉 = 1.2; Δ H   1(298) °= 25.3 ± 0.8 kcal/mol. This gives Δ H   ƒ298 °(CH 3 SĊH 2 ) = 35.6 ± 1.0 kcal/mol and D H   298 °(CH 3 SCH 2 H) = 96.6 ± 1.0 kcal/mol. This then yields E π (CH 2 S) = 52 ± 3 kcal. From the observed rate of pressure increase in the system and the preceding data k 3 , is calculated for the step CH 3 SCH 2 → CH 3 + CH 2 S. From an estimated A ‐factor E 3 is deduced and from the overall thermochemistry values for k −3 and E −3 . A detailed mechanism is proposed for the I ‐atom catalyzed conversion of CH 2 S to CS 2 + CH 4 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom