Premium
Kinetics and equilibria of the reaction between bromine and ethyl ether. The CH bond dissociation energy in ethyl ether
Author(s) -
Kondo Osamu,
Benson Sidney W.
Publication year - 1984
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550160802
Subject(s) - chemistry , ether , kinetics , bond dissociation energy , bromine , activation energy , kinetic energy , dissociation (chemistry) , atmospheric temperature range , medicinal chemistry , reaction rate constant , thermodynamics , organic chemistry , physics , quantum mechanics
The kinetics and equilibria of the reaction:\documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm Br} + {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm OCH}_{\rm 2} {\rm CH}_{\rm 3} {\rm}\mathop {{\rm \rightleftharpoons}}\limits^{\rm 1} {\rm HBr} + {\rm CH}_{\rm 3} {\rm CHOCH}_{\rm 2} {\rm CH}_{\rm 3} $$\end{document}have been studied in the temperature range 298–333 K by using the very low pressure reactor (VLPR) technique. Combining the estimated entropy change of reaction (1), ΔS ° 1= 8.1 ± 1.0 eu, with the measured ΔG ° 1 , we find ΔH ° 1= 4.2 ± 0.4 kcal/mol; ΔH ° f (CH 3 CHOC 2 H 5 ) = −20.2 kcal/mol, and DH° [ Et OCH(Me)‐H] = 91.7 ± 0.4 kcal/mol. We find:\documentclass{article}\pagestyle{empty}\begin{document}$$ \log k_1 (1/{\rm mol s)} = 10.8(\pm 0.7) - (3.9 \pm 4.0)/\theta $$\end{document}where θ = 2.3 RT in kcal/mol. It has been shown that the reaction proceeds via a loose transition state and the “contact TS ” model calculation gives a very good agreement with the observed value.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom