z-logo
Premium
H 2 S‐promoted thermal isomerization of butene‐2 CIS to butene‐1 or butene‐2 trans around 500°C
Author(s) -
Richard C.,
Boiveaut A.,
Martin R.
Publication year - 1980
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550121204
Subject(s) - chemistry , isomerization , 2 butene , reaction rate constant , butene , radical , activation energy , rate equation , thermal , thermodynamics , kinetics , medicinal chemistry , photochemistry , computational chemistry , catalysis , organic chemistry , quantum mechanics , ethylene , physics
H 2 S increases the thermal isomerization of butene‐2 cis (B c ) to butene‐1 (B 1 ) and butene‐2 trans (B t ) around 500°C. This effect is interpreted on the basis of a free radical mechanism in which buten‐2‐yl and thiyl free radicals are the main chain carriers. B 1 formation is essentially explainedby the metathetical steps:whereas the free radical part of B t formation results from the addition–elimination processes:. It is shown that the initiation step of pure B c thermal reaction is essentially unimolecular:and that a new initiation step occurs in the presence of H 2 S:. The rate constant ratio has been evaluated:\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{k_2 }}{{k_3 }} \simeq 0.4\exp ^{ - (6500 \pm 1000)/RT} (RT\,in\,cal/mol) $$\end{document}and the best values of k 1 and k 1' , consistent with this work and with thermochemical data, are\documentclass{article}\pagestyle{empty}\begin{document}$$ k_1 \simeq 10^{15.5 - 85,500/2.3RT} \sec ^{ - 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k_{1^\prime } \simeq 10^{13.6 - 53,700/2.3RT} {\rm cm}^3 /{\rm mol}\,{\rm sec} $$\end{document} . From thermochemical data of the literature and an “intrinsic value” of E −3 ⋍ 2 kcal/mol given by Benson, further values of rate constants may be proposed:\documentclass{article}\pagestyle{empty}\begin{document}$$ k_3 \simeq 10^{14 - 9,300/2.3RT} cm^3 /mol\sec $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k_3 \simeq 10^{13.6 - 15,800/2.3RT} cm^3 /mol\sec $$\end{document}is shown to be E 4 ⋍ 3.5 ± 2 kcal/mol, of the same order as the activation energy of the corresponding metathetical step.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom