z-logo
Premium
Thermal stability of intermediate sized acetylenic compounds and the heats of formation of propargyl radicals
Author(s) -
Tsang Wing
Publication year - 1978
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550100705
Subject(s) - chemistry , propargyl , thermal decomposition , bond cleavage , radical , yield (engineering) , activation energy , decomposition , standard enthalpy of formation , stereochemistry , medicinal chemistry , thermodynamics , organic chemistry , catalysis , physics
4‐Methylhexyne‐1, 5‐methylhexyne‐1, hexyne‐1, and 6‐methylheptyne‐2 have been decomposed in comparative‐rate single‐pulse shock‐tube experiments. Rate expressions for the initial decomposition reactions at 1100°K and from 2 to 6 atm pressure are\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}s {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + s{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{15.9} \exp (- 35,000/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm allene} + n{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{12.9} \exp (- 28,000/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + i{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{16.1} \exp (- 36,700/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm allene} + i{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{2.3} \exp (- 27,500/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}n {\rm C}_{\rm 3} {\rm H}_{\rm 7} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + n{\rm C}_{\rm 3} {\rm H}_{\rm 7} \cdot) = 10^{15.9} \exp (- 36,300/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}n {\rm C}_{\rm 3} {\rm H}_{\rm 7} \to {\rm allene} + n{\rm C}_{\rm 3} {\rm H}_{\rm 6}) = 10^{12.7} \exp (- 28,400/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm CH}_3 {\rm C} \equiv {\rm CCH}_{2^{-}}i {\rm C}_4 {\rm H}_9 \to {\rm CH}_3 {\rm C}) \equiv {\rm CCH}_{\rm 2} \cdot + i{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{16.2} \exp (- 36,800/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm CH}_3 {\rm C} \equiv {\rm CCH}_{2^{-}}i {\rm C}_4 {\rm H}_9 \to 1,2-butadiene + i{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{12.3} \exp (- 28,700/T)\sec ^{- 1} $$\end{document}In combination with previous results, rate expressions for propargyl CC bond cleavage are related to that for the alkanes by the expression\documentclass{article}\pagestyle{empty}\begin{document}$$ k_{\rm B} (alkyne) = \frac{1}{{3 \pm 1.5}}\exp (+ 4.25/T)k_{\rm B} (alkane) $$\end{document}These results yield a propargyl resonance energy of D ( n C 3 H 7 ‐H) – D (C 3 H 3 ‐H) = 36 ± 2 kJ, in excellent agreement with a previous shock‐tube study. They also lead to D (CH 3 C≡CCH 2 ‐H) – D (C 3 H 3 ‐H) = 0.6 ± 3 kJ, D ( s C 4 H 9 ‐H) – D ( i C 3 H 7 ‐H) = 0 ± 3 kJ, D ( i C 4 H 9 ‐H) – D ( n C 3 H 7 ‐H) = 2 ± 3 kJ, and D ( n C 3 H 7 ‐H) – D ( i C 3 H 7 ‐H) = 13.9 ± 3 kJ (all values are for 300°K). The systematics of the molecular decomposition process are explored.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here