Premium
Thermal stability of intermediate sized acetylenic compounds and the heats of formation of propargyl radicals
Author(s) -
Tsang Wing
Publication year - 1978
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550100705
Subject(s) - chemistry , propargyl , thermal decomposition , bond cleavage , radical , yield (engineering) , activation energy , decomposition , standard enthalpy of formation , stereochemistry , medicinal chemistry , thermodynamics , organic chemistry , catalysis , physics
4‐Methylhexyne‐1, 5‐methylhexyne‐1, hexyne‐1, and 6‐methylheptyne‐2 have been decomposed in comparative‐rate single‐pulse shock‐tube experiments. Rate expressions for the initial decomposition reactions at 1100°K and from 2 to 6 atm pressure are\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}s {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + s{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{15.9} \exp (- 35,000/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm allene} + n{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{12.9} \exp (- 28,000/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + i{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{16.1} \exp (- 36,700/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}i {\rm C}_{\rm 4} {\rm H}_{\rm 9} \to {\rm allene} + i{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{2.3} \exp (- 27,500/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}n {\rm C}_{\rm 3} {\rm H}_{\rm 7} \to {\rm HC} \equiv {\rm CCH}_{\rm 2} \cdot + n{\rm C}_{\rm 3} {\rm H}_{\rm 7} \cdot) = 10^{15.9} \exp (- 36,300/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm HC} \equiv {\rm CCH}_{{\rm 2}^{{\rm -}}}n {\rm C}_{\rm 3} {\rm H}_{\rm 7} \to {\rm allene} + n{\rm C}_{\rm 3} {\rm H}_{\rm 6}) = 10^{12.7} \exp (- 28,400/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm CH}_3 {\rm C} \equiv {\rm CCH}_{2^{-}}i {\rm C}_4 {\rm H}_9 \to {\rm CH}_3 {\rm C}) \equiv {\rm CCH}_{\rm 2} \cdot + i{\rm C}_{\rm 4} {\rm H}_{\rm 9} \cdot) = 10^{16.2} \exp (- 36,800/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm CH}_3 {\rm C} \equiv {\rm CCH}_{2^{-}}i {\rm C}_4 {\rm H}_9 \to 1,2-butadiene + i{\rm C}_{\rm 4} {\rm H}_{\rm 8}) = 10^{12.3} \exp (- 28,700/T)\sec ^{- 1} $$\end{document}In combination with previous results, rate expressions for propargyl CC bond cleavage are related to that for the alkanes by the expression\documentclass{article}\pagestyle{empty}\begin{document}$$ k_{\rm B} (alkyne) = \frac{1}{{3 \pm 1.5}}\exp (+ 4.25/T)k_{\rm B} (alkane) $$\end{document}These results yield a propargyl resonance energy of D ( n C 3 H 7 ‐H) – D (C 3 H 3 ‐H) = 36 ± 2 kJ, in excellent agreement with a previous shock‐tube study. They also lead to D (CH 3 C≡CCH 2 ‐H) – D (C 3 H 3 ‐H) = 0.6 ± 3 kJ, D ( s C 4 H 9 ‐H) – D ( i C 3 H 7 ‐H) = 0 ± 3 kJ, D ( i C 4 H 9 ‐H) – D ( n C 3 H 7 ‐H) = 2 ± 3 kJ, and D ( n C 3 H 7 ‐H) – D ( i C 3 H 7 ‐H) = 13.9 ± 3 kJ (all values are for 300°K). The systematics of the molecular decomposition process are explored.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom