z-logo
Premium
Thermal stability of primary amines
Author(s) -
Tsang Wing
Publication year - 1978
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550100105
Subject(s) - chemistry , radical , decomposition , amine gas treating , shock tube , primary (astronomy) , context (archaeology) , thermal decomposition , alkyl , hydrazine (antidepressant) , computational chemistry , thermodynamics , organic chemistry , shock wave , paleontology , physics , biology , chromatography , astronomy
Tertiary‐amyl amine has been decomposed in single‐pulse shock‐tube experiments. Rate expressions for several of the important primary steps are\documentclass{article}\pagestyle{empty}\begin{document}$$ k(t{\rm C}_5 {\rm H}_{11 - {\rm NH}_2} \to t{\rm C}_5 {\rm H}_{11}\!\!\cdot + {\rm NH}_2\cdot) = 10^{15.9} \exp (-39,700/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k({\rm C}_2 {\rm H}_5- {\rm C}({\rm CH}_3)_2{\rm NH}_2 \to {\rm C}_2 {\rm H}_5 \cdot + \cdot{\rm C}({\rm CH}_3)_2{\rm NH}_2) = 10^{16.5} \exp (- 38,500/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ k(t{\rm C}_5 {\rm H}_{11} {\rm NH}_2 \to {\rm C}_5 {\rm H}_{10} + {\rm NH}_3) <10^{14.5} \exp (- 37,200/T)\sec ^{- 1} $$\end{document} This leads to D (CH 3 H) – D (NH 2 H) = −10.5 kJ and D [(CH 3 ) 3 CH] – D [(CH 3 ) 2 NH 2 CH] = + 6 kJ. The present and earlier comparative rate single‐pulse shock‐tube data when combined with high‐pressure hydrazine decomposition results‐(after correcting for fall off effects through RRKM calculations) gives\documentclass{article}\pagestyle{empty}\begin{document}$$ [k_r^2 (t{\rm C}_5 {\rm H}_{11} \cdot,{\rm NH}_2 \cdot)/k_r (t{\rm C}_5 {\rm H}_{11} \cdot,t{\rm C}_5 {\rm H}_{11} \cdot)k_r ({\rm NH}_2 \cdot,{\rm NH}_2 \cdot)]^{1/2} \sim 2\,{\rm at}\,1100^o {\rm K} $$\end{document}where k r (…) is the recombination rate involving the appropriate radicals. This suggests that in this context amino radical behavior is analogous to that of alkyl radicals. If this agreement is exact, then\documentclass{article}\pagestyle{empty}\begin{document}$$ k_\infty ({\rm N}_2 {\rm H}_4 \to 2{\rm NH}_2 \cdot) = 10^{16.25} \exp (- 32,300/T)\sec ^{- 1} $$\end{document}Rate expressions for the primary step in the decomposition of a variety of primary amines have been computed. In the case of benzyl amine where data exist the agreement is satisfactory. The following differences in bond energies have been estimated:\documentclass{article}\pagestyle{empty}\begin{document}$$ D(i{\rm C}_3 {\rm H}_7 {-\!-} {\rm H}) {-\!-} D[{\rm CH}_3 ({\rm NH}_2){\rm CH} {-\!-} {\rm H}] = 14.3\,{\rm kJ} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$ D({\rm C}_2 {\rm H}_5 {-\!-} {\rm H}) - D({\rm NH}_2 {\rm CH}_2 {-\!-} {\rm H}) = 15.9\,{\rm kJ} $$\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom