Premium
Thermal gas‐phase decomposition of chloroethylenes. II. Vinyl chloride
Author(s) -
Zabel F.
Publication year - 1977
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550090413
Subject(s) - chemistry , thermal decomposition , argon , vinyl chloride , dissociation (chemistry) , reaction rate constant , decomposition , shock wave , atmospheric temperature range , gas phase , limiting , analytical chemistry (journal) , thermodynamics , kinetics , organic chemistry , physics , quantum mechanics , polymer , mechanical engineering , engineering , copolymer
The thermal gas‐phase decomposition of vinyl chloride has been studied behind shock waves over the temperature range of 1350‐1900°K and the density range of 7 × 10 −7 ‐1.5 × 10 −3 mol/cm 3 (at 1600°K) in mixtures of C 2 H 3 Cl highly diluted with argon. The ultraviolet absorption of C 2 H 3 C was recorded at 230 nm as a function of time. The decomposition proceeds via molecular elimination of HCl. The unimolecular dissociation rate is pressure dependent at all but the highest pressures applied. Application of modified HKRR theory results in the rate expression\documentclass{article}\pagestyle{empty}\begin{document}$$ k_\infty = 10^{14.0 \pm 0.2}\, {\rm exp}[= (290 \pm 12){\rm kJ}/{\rm mol}/RT]\,{\rm s}^{- 1},\,\quad 1400^ \circ {\rm K} \le T \le 1800^ \circ {\rm K} $$\end{document}for the limiting high pressure rate constant, and in a collision efficiency of\documentclass{article}\pagestyle{empty}\begin{document}$$ \beta _c = \frac{{k_0 ({\rm experiment})}}{{k_{\rm 0} {\rm (theoretical, strong collisions})}} \cong 0.04,\quad {\rm for M} = {\rm Ar},T = 1600^ \circ {\rm K} $$\end{document}derived from the limiting low‐pressure rate constant.