z-logo
Premium
Pyrolysis of dimethyl peroxide
Author(s) -
Batt L.,
McCulloch R. D.
Publication year - 1976
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550080403
Subject(s) - homogeneous , decomposition , order (exchange) , thermal decomposition , chemistry , physics , peroxide , reaction rate constant , analytical chemistry (journal) , thermodynamics , kinetics , organic chemistry , quantum mechanics , finance , economics
By using isobutane ( t ‐BuH) as a radical trapit has been possible to study the initial step in the decomposition of dimethyl peroxide (DMP) over the temperature range of 110–140°C in a static system. For low concentrations of DMP (2.5 × 10 −5 −10 −4 M ) and high pressures of t −BuH (∼0.9 atm) the first‐order homogeneous rate of formation of methanol (MeOH) is a direct measure of reaction (1): \documentclass{article}\pagestyle{empty}\begin{document}${\rm DMP}\mathop \to \limits^1 2{\rm Me}\mathop {\rm O}\limits^{\rm .},{\rm Me}\mathop {\rm O}\limits^{\rm .} + t{\rm - BuH}\mathop \to \limits^4 {\rm MeOH} + t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u}$\end{document} . For complete decomposition of DMP in t ‐BuH, virtually all of the DMP is converted to MeOH. Thus DMP is a clean thermal source of Me \documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} . In the decomposition of pure DMP complications arise due to the H‐abstraction reactions of Me \documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} from DMP and the product CH 2 O. The rate constant for reaction (1) is given by k 1 = 10 15.5−37.0 /θ sec −1 , very similar to other dialkyl peroxides. The thermochemistry leads to the result D(MeOOMe) = 37.6 ± 0.2 kcal/mole and / H   ° f (Me \documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} ) = 3.8 ± 0.2 kcal/mole. It is concluded that D(ROOR) and D(ROH) are unaffected by the nature of R. From Δ S   ° 1and A 1 , k 2 is calculated to be 10 10.3±0.5 M −1 · sec −1 : \documentclass{article}\pagestyle{empty}\begin{document}$2{\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^2 {\rm DMP}$\end{document} . For complete reaction, trace amounts of t ‐BuOMe lead to the result k 2 ∼ 10 9 M −1 ·sec −1 : \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - Bu}\mathop \to \limits^5$\end{document} products. From the relationship k 6 = 2( k 2 k 5a ) 1/2 and with k 5a = 10 8.4 M −1 · sec −1 , we arrive at the result k 6 = 10 9.7 M −1 · sec −1 : \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - u}\mathop {\rm B}\limits^{\rm .} \to (t{\rm - Bu)}_{\rm 2}{\rm,}t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u} + {\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^6 t{\rm - BuOMe}$\end{document} .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom