Premium
Thermal stability of alcohols
Author(s) -
Tsang Wing
Publication year - 1976
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550080203
Subject(s) - chemistry , thermal stability , thermal decomposition , stability (learning theory) , image (mathematics) , decomposition , analytical chemistry (journal) , stereochemistry , organic chemistry , machine learning , computer science , artificial intelligence
Abstract 3,3‐Dimethylbutanol‐2 (3,3‐DMB‐ol‐2) and 2,3‐dimethylbutanol‐2 (2,3‐DMB‐ol‐2) have been decomposed in comparative‐rate single‐pulse shock‐tube experiments. The mechanisms of the decompositions areThe rate expressions are\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm B} (2,3{\rm - DBM - ol - 2}) = 10^{16.24} {\rm exp}(- 37,400/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm EP} (2,3{\rm - DBM - ol - 2}) = 10^{14.17} {\rm exp}(- 32,300/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm ET} (2,3{\rm - DBM - ol - 2}) = 10^{13.66} {\rm exp}(- 32,700/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm B} (3,3{\rm - DBM - ol - 2}) = 10^{16.33} {\rm exp}(- 37,500/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm EP} (3,3{\rm - DBM - ol - 2}) = 10^{14.0} {\rm exp}(- 34,200/T)\sec ^{- 1}$$\end{document} They lead to D ( i C 3 H 7 H) – D ((CH 3 ) 2 (OH) CH) = 8.3 kJ and D (C 2 H 5 H) – D (CH 3 (OH) CHH) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give\documentclass{article}\pagestyle{empty}\begin{document}$$k(t{\rm C}_{\rm 4} {\rm H}_{\rm 9} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm C(CH}_{\rm 3} {\rm)}_{\rm 2} {\rm OH}) = 10^{16.8} {\rm exp}(- 40,900/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k(i{\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH(CH}_{\rm 3} {\rm)OH}) = 10^{16.5} {\rm exp}(- 41,100/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k(n{\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm OH}) = 10^{16.2} {\rm exp}(- 41,100/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k({\rm C}_{\rm 2} {\rm H}_{\rm 5} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH}_{\rm 2} {\rm OH}) = 10^{16.4} {\rm exp}(- 42,500/T)\sec ^{- 1}$$\end{document}andThe rate expressions for the decomposition of 2,3‐DMB‐1 and 3,3‐DMB‐1 are\documentclass{article}\pagestyle{empty}\begin{document}$$ k(2,3{\rm - DMB - 1} \to {\rm CH}_3 \cdot + {\rm H}_2 {\rm C} = {\rm C}({\rm CH}_3 ) - \mathop {\mathop {\rm C}\limits^{\rm .} {\rm H}({\rm CH}_3 )) = 10^{16.0} \exp ( - 35,700/T)\sec ^{ - 1} } $$\end{document} and\documentclass{article}\pagestyle{empty}\begin{document}$$ k(3,3{\rm - DMB - 1} \to {\rm CH}_{\rm 3} \cdot + {\rm H}_2 {\rm C = CH} - \mathop {\rm C}\limits^{\rm .} ({\rm CH}_3 )_2 ) = 10^{16.2} \exp ( - 35,500/T)\sec ^{ - 1} $$\end{document}