z-logo
Premium
Thermal stability of alcohols
Author(s) -
Tsang Wing
Publication year - 1976
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550080203
Subject(s) - chemistry , thermal stability , thermal decomposition , stability (learning theory) , image (mathematics) , decomposition , analytical chemistry (journal) , stereochemistry , organic chemistry , machine learning , computer science , artificial intelligence
3,3‐Dimethylbutanol‐2 (3,3‐DMB‐ol‐2) and 2,3‐dimethylbutanol‐2 (2,3‐DMB‐ol‐2) have been decomposed in comparative‐rate single‐pulse shock‐tube experiments. The mechanisms of the decompositions areThe rate expressions are\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm B} (2,3{\rm - DBM - ol - 2}) = 10^{16.24} {\rm exp}(- 37,400/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm EP} (2,3{\rm - DBM - ol - 2}) = 10^{14.17} {\rm exp}(- 32,300/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm ET} (2,3{\rm - DBM - ol - 2}) = 10^{13.66} {\rm exp}(- 32,700/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm B} (3,3{\rm - DBM - ol - 2}) = 10^{16.33} {\rm exp}(- 37,500/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm EP} (3,3{\rm - DBM - ol - 2}) = 10^{14.0} {\rm exp}(- 34,200/T)\sec ^{- 1}$$\end{document} They lead to D ( i C 3 H 7 H) – D ((CH 3 ) 2 (OH) CH) = 8.3 kJ and D (C 2 H 5 H) – D (CH 3 (OH) CHH) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give\documentclass{article}\pagestyle{empty}\begin{document}$$k(t{\rm C}_{\rm 4} {\rm H}_{\rm 9} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm C(CH}_{\rm 3} {\rm)}_{\rm 2} {\rm OH}) = 10^{16.8} {\rm exp}(- 40,900/T)\sec ^{- 1} $$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k(i{\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH(CH}_{\rm 3} {\rm)OH}) = 10^{16.5} {\rm exp}(- 41,100/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k(n{\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH}_{\rm 2} {\rm CH}_{\rm 2} {\rm OH}) = 10^{16.2} {\rm exp}(- 41,100/T)\sec ^{- 1}$$\end{document}\documentclass{article}\pagestyle{empty}\begin{document}$$k({\rm C}_{\rm 2} {\rm H}_{\rm 5} {\rm OH} \to {\rm CH}_{\rm 3} \cdot + \cdot {\rm CH}_{\rm 2} {\rm OH}) = 10^{16.4} {\rm exp}(- 42,500/T)\sec ^{- 1}$$\end{document}andThe rate expressions for the decomposition of 2,3‐DMB‐1 and 3,3‐DMB‐1 are\documentclass{article}\pagestyle{empty}\begin{document}$$ k(2,3{\rm - DMB - 1} \to {\rm CH}_3 \cdot + {\rm H}_2 {\rm C} = {\rm C}({\rm CH}_3 ) - \mathop {\mathop {\rm C}\limits^{\rm .} {\rm H}({\rm CH}_3 )) = 10^{16.0} \exp ( - 35,700/T)\sec ^{ - 1} } $$\end{document} and\documentclass{article}\pagestyle{empty}\begin{document}$$ k(3,3{\rm - DMB - 1} \to {\rm CH}_{\rm 3} \cdot + {\rm H}_2 {\rm C = CH} - \mathop {\rm C}\limits^{\rm .} ({\rm CH}_3 )_2 ) = 10^{16.2} \exp ( - 35,500/T)\sec ^{ - 1} $$\end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom