z-logo
Premium
The mechanism of thermal dehydrochlorination. Pyrolysis of 1‐Chloro‐1‐fluoroethane and 1‐chloro‐1, 1‐difluoroethane
Author(s) -
Martens G. J.,
Godfroid M.,
Decelle R.,
Verbeyst J.
Publication year - 1972
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.550040605
Subject(s) - chemistry , pyrolysis , thermal , atmospheric temperature range , reaction rate constant , range (aeronautics) , thermodynamics , atmospheric pressure , computational chemistry , photochemistry , organic chemistry , kinetics , aerospace engineering , meteorology , physics , quantum mechanics , engineering
The thermal decompositions of 1‐chloro‐1‐fluoroethane and 1‐chloro‐1,1‐difluorethane at atmospheric pressure have been studied in the temperature range 500–600°C in a flow system. The dehydrochlorinations are homogenous in a carbonaceous reactor and unimolecular. The rate constants are given by\documentclass{article}\pagestyle{empty}\begin{document}$$k_{\rm I} = 10^{13.94 \pm 0.05} \exp (- 57,015 \pm 200/RT)^{\sec - 1}$$\end{document} and\documentclass{article}\pagestyle{empty}\begin{document}$$k_{{\rm II}} = 10^{14.35 \pm 0.12} \exp (- 60,200 \pm 500/RT)^{\sec - 1}$$\end{document} The criteria for molecular or chain processes in thermal dehydrochlorinations are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom