Premium
Screening gas‐phase chemical kinetic models: Collision limit compliance and ultrafast timescales
Author(s) -
Yalamanchi Kiran K.,
Tingas EfstathiosAl,
Im Hong G.,
Sarathy S. Mani
Publication year - 2020
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.21373
Subject(s) - collision , kinetic energy , chemistry , limit (mathematics) , statistical physics , combustion , ultrashort pulse , computer science , physics , classical mechanics , quantum mechanics , mathematical analysis , laser , computer security , mathematics
Detailed gas‐phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user‐friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure‐dependent falloff, and pressure‐dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall‐clock time when resolving ultrafast timescales.