z-logo
Premium
Polybrusselator‐type models
Author(s) -
Katime Issa,
Ortiz Juan A. Pérez,
Zuluaga Fabio,
Mendizábal Eduardo
Publication year - 2008
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.20337
Subject(s) - chemistry , propagator , isomerization , polymerization , radical , brusselator , autocatalysis , photochemistry , polymer , catalysis , quantum mechanics , physics , organic chemistry , nonlinear system
In this paper, the possibility for autocatalysis in polymerization reactions is explored by introducing part of a polymerization mechanism in a model known as Brusselator. It is assumed that monomer concentration is practically constant. Four possibilities are examined: (1) a first radical propagator X, which has an isomer of position of the free electron, Y, dimerizes reversibly and this dimer catalyzes the isomerization of Y to X; (2) the radical propagator X is a polymer with a critical degree of polymerization and has an isomer of position of the free electron Y. This critical radical propagator catalyzes the conversion of Y to X; (3) any radical propagator has an isomer of position of the free electron, Y, and any polymer obtained by recombination of the radicals can catalyze the conversion of Y into its corresponding isomer X; and (4) any radical propagator with a critical degree of polymerization can catalyze the conversion of Y into its corresponding isomer. Isomorphism equations are obtained in all mechanisms, which implies the possibility of limit cycle oscillations (Brusselator model). © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 617–623, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom