z-logo
Premium
Theoretical study of thiolysis in penicillins and cephalosporines
Author(s) -
Garcías Rafael C.,
Coll Miguel,
Donoso Josefa,
Vilanova Bartolomé,
Muñoz Francisco
Publication year - 2005
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.20082
Subject(s) - chemistry , thiolysis , tetrahedral carbonyl addition compound , intramolecular force , nucleophile , protonation , lactam , leaving group , stereochemistry , medicinal chemistry , catalysis , organic chemistry , ion , polyphenol , proanthocyanidin , antioxidant
Semiempirical calculations were used to conduct a comprehensive study of the thiolysis of the fundamental core of penicillins and cephalosporins. The significance of the intramolecular protonation of the β‐lactam nitrogen in the formation and cleavage of the tetrahedral intermediate ( T in Scheme 1) was examined in two thiols bearing substituents of different basicity in β with respect to the thiol group in the attacking nucleophile, namely 2‐mercaptoethanol ( 6 ) and 2‐mercaptoethylamine ( 7 ). Based on the results, the rate‐determining step in the reaction of penicillins is the cleavage of the tetrahedral intermediate, consistent with an intramolecular acid catalysis process in their thiolysis by 2‐mercaptoethylamine. On the other hand, the rate‐determining step in the reaction of cephalosporins, which possess an appropriate leaving group at position 3', is the formation of the tetrahedral intermediate, so the desolvation energy of the nucleophile is a major contributor to the overall energy of the process. This differential behavior between the two types of β‐lactam bicycles arises from the presence of the acetate group at 3' and the delocalization of π electrons over the N 5 –C 4 –C 3 system in cephalosporins; this favors the formation of a thiolate with the 5‐ethoxymethylene‐1,3‐thiazine group in the cleavage of the tetrahedral intermediate, which is stabilized by an intramolecular hydrogen bond between N 5 and the alcohol or amine group in β of the attacking thiol. The theoretical results are consistent with previous experimental data showing that, unlike penicillins, cephalosporins undergo no intramolecular acid catalysis in their thiolysis. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 434–443, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here