z-logo
Premium
Kinetic characterization of a transient reaction by degeneration of the precursor mechanism: Application to the synthesis of 3,4‐diazabicyclo[4.3.0]‐ non‐2‐ene
Author(s) -
Delalu H.,
Berthet J.,
Metz R.,
Elkhatib M.
Publication year - 2006
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.20072
Subject(s) - chemistry , octane , ene reaction , kinetics , reaction mechanism , kinetic energy , catalysis , order of reaction , chloramine , reaction rate , medicinal chemistry , stereochemistry , reaction rate constant , organic chemistry , chlorine , physics , quantum mechanics
The rate of the oxidation of N ‐amino‐3‐azabicyclo[3.3.0]octane by chloramine has been studied by GC and HPLC between pH 10.5 and 13.5. The second‐order reaction exhibits specific acid catalysis. The formation of N , N ′‐azo‐3‐azabicyclo[3.3.0]octane or 3,4‐diazabicyclo[4.3.0]non‐2‐ene is pH, concentration, and temperature dependent. In alkaline media, the exclusive formation of 3,4‐diazabicyclo[4.3.0]non‐2‐ene is observed. Kinetic studies show that the oxidation of N ‐amino‐3‐azabicyclo[3.3.0]octane by chloramine is a multistep process with the initial formation of a diazene‐type intermediate, which is converted by hydroxide ions into 3,4‐diazabicyclo[4.3.0]non‐2‐ene. Because it was not possible to follow the rate of change of the intermediate concentration, to determine the kinetics of 3,4‐diazabicyclo[4.3.0]non‐2‐ene formation, a procedure based on the degeneration of the precursor process was adopted. An appropriate mathematical treatment allowed a quantitative interpretation of all the phenomena observed over the given pH interval. The activation parameters were determined. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 327–338, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom