z-logo
Premium
Shock tube measurements of branched alkane ignition times and OH concentration time histories
Author(s) -
Oehlschlaeger M. A.,
Davidson D. F.,
Herbon J. T.,
Hanson R. K.
Publication year - 2003
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.10173
Subject(s) - chemistry , ignition system , shock tube , alkane , combustion , analytical chemistry (journal) , octane , butane , hydrocarbon , photochemistry , thermodynamics , shock wave , organic chemistry , catalysis , physics
Abstract Ignition times and hydroxyl (OH) radical concentration time histories were measured behind reflected shock waves during the oxidation of three branched alkanes: iso‐butane (2‐methylpropane), iso‐pentane (2‐methylbutane), and iso‐octane (2,2,4‐trimethylpentane). Initial reflected shock conditions ranged from 1177 to 2009 K and 1.10 to 12.58 atm with dilute fuel/O 2 /Ar mixtures varying in fuel concentration from 100 ppm to 1.25% and in equivalence ratio from 0.25 to 2. Ignition times were measured using endwall CH emission and OH concentrations were measured using narrow‐linewidth ring‐dye laser absorption of the R 1 (5) line of the OH A‐X (0,0) band at 306.7 nm. The ignition times and OH concentration time histories were compared to modeled predictions of seven branched alkane oxidation mechanisms currently available in the literature and the implications of these comparisons are discussed. These data provide a unique database for the validation of detailed hydrocarbon oxidation mechanisms of propulsion related fuels. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 67–78 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here