Premium
Experimental and modeling study of the oxidation of benzene
Author(s) -
Costa I. Da,
Fournet R.,
Billaud F.,
BattinLeclerc F.
Publication year - 2003
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.10148
Subject(s) - benzene , chemistry , laminar flow , plug flow reactor model , ignition system , shock wave , oxygen , argon , equivalence ratio , analytical chemistry (journal) , thermodynamics , organic chemistry , combustion , continuous stirred tank reactor , combustor , physics
This paper describes an experimental and modeling study of the oxidation of benzene. The low‐temperature oxidation was studied in a continuous flow stirred tank reactor with carbon‐containing products analyzed by gas chromatography. The following experimental conditions were used: 923 K, 1 atm, fuel equivalence ratios from 1.9 to 3.6, concentrations of benzene from 4 to 4.5%, and residence times ranging from 1 to 10 s corresponding to benzene conversion yields from 6 to 45%. The ignition delays of benzene–oxygen–argon mixtures with fuel equivalence ratios from 1 to 3 were measured behind shock waves. Reflected shock waves permitted to obtain temperatures from 1230 to 1970 K and pressures from 6.5 to 9.5 atm. A detailed mechanism has been proposed and allows us to reproduce satisfactorily our experimental results, as well as some data of the literature obtained in other conditions, such as in a plug flow reactor or in a laminar premixed flame. The main reaction paths have been determined for the four series of measurements by sensitivity and flux analyses. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 503–524, 2003