Premium
Kinetics of the gas‐phase reaction of n ‐C 6 –C 10 aldehydes with the nitrate radical
Author(s) -
Noda Jun,
Holm Camilla,
Nyman Gunnar,
Langer Sarka,
Ljungström Evert
Publication year - 2002
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.10113
Subject(s) - heptanal , chemistry , octanal , decanal , nonanal , butyraldehyde , analytical chemistry (journal) , reaction rate , hexanal , organic chemistry , aldehyde , catalysis
Rate coefficients for gas‐phase reaction between nitrate radicals and the n ‐C 6 –C 10 aldehydes have been determined by a relative rate technique. All experiments were carried out at 297 ± 2 K, 1020 ± 10 mbar and using synthetic air or nitrogen as the bath gas. The experiments were made with a collapsible sampling bag as reaction chamber, employing solid‐phase micro extraction for sampling and gas chromatography/flame ionization detection for analysis of the reaction mixtures. One limited set of experiments was carried out using a glass reactor and long‐path FTIR spectroscopy. The results show good agreement between the different techniques and conditions employed as well as with previous studies (where available). With butanal as reference compound, the determined values (in units of 10 −14 cm 3 molecule −1 s −1 ) for each of the aldehydes were as follows: hexanal, 1.7 ± 0.1; heptanal, 2.1 ± 0.3; octanal, 1.5 ± 0.2; nonanal, 1.8 ± 0.2; and decanal, 2.2 ± 0.4. With propene as reference compound, the determined rate coefficients were as follows: heptanal, 1.9 ± 0.2; octanal, 2.0 ± 0.3; and nonanal, 2.2 ± 0.3. With 1‐butene as reference compound, the rate coefficients for hexanal and heptanal were 1.6 ± 0.2 and 1.8 ± 0.1, respectively. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 120–129, 2003