z-logo
Premium
Synthesis of 1‐amino‐2‐methylindoline by Raschig process: Kinetics of the oxidation of 1‐amino‐2‐methylindoline by chloramine
Author(s) -
Elkhatib M.,
Duriche C.,
Peyrot L.,
Metz R.,
Delalu H.
Publication year - 2002
Publication title -
international journal of chemical kinetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 68
eISSN - 1097-4601
pISSN - 0538-8066
DOI - 10.1002/kin.10078
Subject(s) - chemistry , chloramine , aqueous solution , inorganic chemistry , dissociation (chemistry) , hydrolysis , kinetics , enthalpy , organic chemistry , physics , chlorine , quantum mechanics
The synthesis of 1‐amino‐2‐methylindoline by the Raschig process was undertaken in aqueous solution. The principal side reaction that occurs in the medium is the oxidation of 1‐amino‐2‐methylindoline formed by chloramine. To increase the yield of 1‐amino‐2‐methylindoline, its oxidation by chloramine was studied by GC and HPLC at various concentrations of reactants and for a pH interval ranging between 9.9 and 13.5. The reaction is bimolecular and exhibits a specific acid catalysis. In alkaline medium, 1‐amino‐2‐methylindole is the principal product. The enthalpy and entropy of activation were determined at pH 12.89. In unbuffered solution, the interaction was autocatalyzed by the ammonium ions formed, which indicates a competitive oxidation of neutral and ionic forms of 1‐amino‐2‐methylindoline by chloramine. A mathematical treatment based on one implicit equation allows a quantitative interpretation of all the phenomena observed over the above pH interval. It takes both acid–base dissociation equilibrium and alkaline hydrolysis of chloramine into account. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 515–523, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here