z-logo
Premium
Integrated Population Modeling for White‐Tailed Deer in Saskatchewan, Canada
Author(s) -
Messmer David J.,
Henderson Allison E.,
Whiklo Todd M.,
Conkin Katherine R.
Publication year - 2020
Publication title -
the journal of wildlife management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.94
H-Index - 111
eISSN - 1937-2817
pISSN - 0022-541X
DOI - 10.1002/jwmg.21918
Subject(s) - odocoileus , abundance (ecology) , population , transect , geography , ecoregion , relative species abundance , missing data , statistics , abundance estimation , bayesian probability , ecology , physical geography , demography , biology , mathematics , sociology
Monitoring annual change and long‐term trends in population structure and abundance of white‐tailed deer ( Odocoileus virginianus ) is an important but challenging component of their management. Many monitoring programs consist of count‐based indices of relative abundance along with a variety of population structure information. Analyzed separately these data can be difficult to interpret because of observation error in the data collection process, missing data, and the lack of an explicit biological model to connect the data streams while accounting for their relative imprecision. We used a Bayesian age‐structured integrated population model to integrate data from a fall spotlight survey that produced a count‐based index of relative abundance and a volunteer staff and citizen classification survey that generated a fall recruitment index. Both surveys took place from 2003–2018 in the parkland ecoregion of southeast Saskatchewan, Canada. Our approach modeled demographic processes for age‐specific (0.5‐, 1.5‐, ≥2.5‐year‐old classes) populations and was fit to count and recruitment data via models that allowed for error in the respective observation processes. The Bayesian framework accommodated missing data and allowed aggregation of transects to act as samples from the larger management unit population. The approach provides managers with continuous time series of estimated relative abundance, recruitment rates, and apparent survival rates with full propagation of uncertainty and sharing of information among transects. We used this model to demonstrate winter severity effects on recruitment rates via an interaction between winter snow depth and minimum temperatures. In years with colder than average temperatures and above average snow depth, recruitment was depressed, whereas the negative effect of snow depth reversed in years with above average temperatures. This and other covariate information can be incorporated into the model to test relationships and provide predictions of future population change prior to setting of hunting seasons. Likewise, post hoc analysis of model output allows other hypothesis tests, such as determining the statistical support for whether population status has crossed a management trigger threshold. © 2020 The Wildlife Society.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here