z-logo
Premium
Rapid monitoring of high‐mannose glycans during cell culture process of therapeutic monoclonal antibodies using lectin affinity chromatography
Author(s) -
Kim Jun,
Albarghouthi Methal
Publication year - 2022
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.202100903
Subject(s) - concanavalin a , mannose , monoclonal antibody , glycan , affinity chromatography , lectin , chemistry , monoclonal , antibody , microbiology and biotechnology , chromatography , biochemistry , glycoprotein , biology , in vitro , immunology , enzyme
We developed a simple high‐performance liquid chromatography assay to monitor high‐mannose glycans in monoclonal antibodies by monitoring terminal alpha‐mannose as a surrogate marker. Analysis of glycan data of therapeutic monoclonal antibodies by 2‐aminobenzamide assay showed a linear relationship between high mannose and terminal mannose of Fc glycans. Concanavalin A has a strong affinity to alpha‐mannose in glycans of typical therapeutic monoclonal antibodies. To show that terminal mannose binds specifically to Concanavalin A column, exoglycosidase‐treated monoclonal antibodies were serially blended with untreated monoclonal antibodies. Linear responses of terminal‐mannose binding to the column and comparable data trending with high mannose levels by 2‐aminobenzamide assay confirmed that terminal‐mannose levels measured by the Concanavalin A column can be used as a surrogate for the prediction of high‐mannose levels in monoclonal antibodies. The assay offers a simple, fast, and specific capability for the prediction of high‐mannose content in samples compared with traditional glycan profiling by 2‐aminobenzamide or mass spectrometry‐based methods. When the Concanavalin A column was coupled with protein A column for purification of antibodies from cell culture samples in a fully automated two‐dimensional analysis, high‐mannose data could be relayed to the manufacturing team in less than 30 min, allowing near‐real‐time monitoring of high‐mannose levels in the cell culture process.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here