z-logo
Premium
Determination of four bisphenols in water and urine samples by magnetic dispersive solid‐phase extraction using a modified zeolite/iron oxide composite prior to liquid chromatography diode array detection
Author(s) -
Baile Paola,
Medina Juan,
Vidal Lorena,
Canals Antonio
Publication year - 2020
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201901022
Subject(s) - chromatography , solid phase extraction , elution , chemistry , extraction (chemistry) , bisphenol , sorbent , bisphenol s , bisphenol a , detection limit , solvent , repeatability , analytical chemistry (journal) , adsorption , organic chemistry , epoxy
A novel approach is presented to determine four bisphenols in water and urine samples, employing magnetic dispersive solid‐phase extraction combined with liquid chromatography and diode array detection. A modified zeolite‐based magnetic composite was used as an efficient sorbent, combining the advantages of magnetic materials with the remarkable properties of zeolites. A multivariate optimization design was employed to optimize some experimental factors affecting magnetic dispersive solid‐phase extraction. The method was evaluated under optimized conditions (i.e., amount of sorbent, 50 mg; sample pH, unadjusted; NaCl concentration, 1.25%; extraction and elution time, 2 min; eluent solvent, ethanol; eluent solvent volume, 400 µL), obtaining good linearity with correlation coefficients ranging between 0.995 and 0.999 ( N  = 5) (from 2 to 250 µg/L for bisphenol A, bisphenol AP, and bisphenol P and from 5 to 250 µg/L for bisphenol AF). Method repeatability was assessed obtaining coefficients of variation between 3 and 11% ( n  = 6). Finally, the method was applied to spiked real samples, obtaining for water samples relative recoveries between 83 and 105%, and for urine samples between 81 and 108% for bisphenol A, bisphenol AP, and bisphenol AF, and between 47 and 59% for bisphenol P.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom