Premium
A natural and renewable biosorbent phase as a low‐cost approach in disposable pipette extraction technique for the determination of emerging contaminants in lake water samples
Author(s) -
Morés Lucas,
da Silva Ana Cristine,
Merib Josias,
Dias Adriaeves,
Carasek Eduardo
Publication year - 2019
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201801005
Subject(s) - paraben , chromatography , detection limit , chemistry , extraction (chemistry) , desorption , solid phase extraction , camphor , preservative , adsorption , food science , organic chemistry
This study proposes an efficient analytical methodology using a biosorbent (cork) as an extraction phase in disposable pipette extraction technique for the rapid determination of the emerging contaminants methyl paraben, ethyl paraben, benzophenone, 3‐(4‐methylbenzylidene) camphor and 2‐(ethylhexyl)‐4‐(dimethylamino) benzoate in lake water samples using high‐performance liquid chromatography with diode array detection. The optimized conditions were comprised of 800 μL of sample, three cycles of 30 s each for the extraction, pH 6, addition of 30% w/v of NaCl. For the desorption step, the optimized desorption conditions were achieved with 100 μL of a mixture comprised of 50% methanol and 50% acetonitrile v/v, using one cycle of 30 s. Excellent analytical performance was achieved with limits of detection of 0.6 μg/L for methyl paraben to 1.4 μg/L for 3‐(4‐methylbenzylidene) camphor, and the limit of quantitation varied from 2 μg/L for methyl paraben to 4.3 μg/L 3‐(4‐methylbenzylidene) camphor, respectively. The correlation coefficients ranged from 0.9962 for ethyl paraben to 0.9980 for methyl paraben. The method accuracy varied from 71–132%, and the intraday precision ranged from 3 to 23% ( n = 3) and interday from 9 to 23% ( n = 9). The robustness was evaluated through Youden and Lenth's methods and indicated no significant variations in the results.