Premium
Theoretical and experimental research on self‐assembly system of molecularly imprinted polymers formed via chloramphenicol and methacrylic acid
Author(s) -
Liu JunBo,
Wang GuangYu,
Tang ShanShan,
Gao Qian,
Liang DaDong,
Jin RuiFa
Publication year - 2019
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201800997
Subject(s) - methacrylic acid , ethylene glycol dimethacrylate , molecularly imprinted polymer , hydrogen bond , chemistry , chloramphenicol , molecular imprinting , pentaerythritol , polymer chemistry , polymer , organic chemistry , monomer , selectivity , molecule , biochemistry , antibiotics , fire retardant , catalysis
Chloramphenicol was chosen as the imprinting molecule and the methacrylic acid was chosen as the functional monomer to prepare molecularly imprinted polymers. Ethylene glycol dimethacrylate, pentaerythritol triacrylate, and trimethylolpropane trimethylacrylate were used as the cross‐linking agents, respectively. The interaction processes between chloramphenicol and methacrylic acid were simulated by using the ωB97XD/6‐31G ( d , p ) method. The self‐assembled configuration, bonding sites, binding number, binding energy, and interaction principle of stable complex formed by chloramphenicol and methacrylic acid with different molar ratios have been studied. The selectivity of the most stable complex formed from chloramphenicol and methacrylic acid was discussed with the thiamphenicol and florfenicol as the analogues of chloramphenicol. The results showed that chloramphenicol and methacrylic acid were interacted through the hydrogen bonds. When the molar ratio was 1:10 and pentaerythritol triacrylate as the cross‐linking agent, the ordered complex formed by chloramphenicol and methacrylic acid has the largest amount of hydrogen bonds and the lowest binding energy. Scatchard analysis showed that the maximum apparent adsorption capacity was 173.3 mg/g (0.536 mol/g), and the selection factor of florfenicol was the largest. This study provides a reliable theoretical and experimental basis for the design, preparation, and characterization of chloramphenicol molecularly imprinted polymers.