Premium
Synthesis of molecularly imprinted dye‐silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ‐fluvalinate in vodka
Author(s) -
Wang Yunyun,
Wang Jixiang,
Cheng Rujia,
Sun Lin,
Dai Xiaohui,
Yan Yongsheng
Publication year - 2018
Publication title -
journal of separation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.72
H-Index - 102
eISSN - 1615-9314
pISSN - 1615-9306
DOI - 10.1002/jssc.201701142
Subject(s) - molecularly imprinted polymer , fluorescence , molecular imprinting , selectivity , detection limit , fluorescein , chemistry , nanotechnology , materials science , chromatography , organic chemistry , physics , quantum mechanics , catalysis
An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core‐shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ‐fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ‐fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety.